modified on 22 April 2011 at 19:03 ••• 131,038 views

Bibliography

From BioPhy.de Wiki

(Difference between revisions)
Jump to: navigation, search
(Created page with "<bibentry> id:<enter id, that clearly identifies this entry. If it's not given, it will be generated automatically> title: author: year: subtitle: city: pu...")
Line 1: Line 1:
-
<bibentry>
+
== Referenzen aus dem Buch ==
-
  id:<enter id, that clearly identifies this entry. If it's not given, it will be generated automatically>
+
== Kapitel 1 ==
-
  title:
+
-
  author:
+
-
  year:
+
-
  subtitle:
+
-
  city:
+
-
  publisher:
+
-
  inauthor: <Editor of a compedium>
+
-
  intitle: <Title of the compedium, e.g. for articles>
+
-
  insubtitle:
+
-
  pages:
+
-
  edition:
+
-
  magazine:
+
-
  issue:
+
-
  type: <magazin or article, if missing, it will be generated automatically>
+
-
  mistake: <set this true, if some data are still missing>
+
-
</bibentry>
+
 
 +
<bibentry>@book{schrdinger_was_1999,
 +
edition = {1},
 +
title = {Was ist Leben?},
 +
isbn = {3492111343},
 +
publisher = {Piper Verlag {GmbH}},
 +
author = {E. Schrödinger},
 +
month = jan,
 +
year = {1999}
 +
}</bibentry>
 +
 
 +
<bibentry>@article{sackmann_supported_1996,
 +
title = {Supported membranes: scientific and practical applications},
 +
volume = {271},
 +
issn = {0036-8075},
 +
shorttitle = {Supported membranes},
 +
url = {http://www.ncbi.nlm.nih.gov/pubmed/8539599},
 +
abstract = {Scientific and practical applications of supported lipid-protein bilayers are described. Membranes can be covalently coupled to or separated from solids by ultrathin layers of water or soft polymer cushions. The latter systems maintain the structural and dynamic properties of free bilayers, forming a class of models of biomembranes that allow the application of a manifold of surface-sensitive techniques. They form versatile models of low-dimensionality complex fluids, which can be used to study interfacial forces and wetting phenomena, and enable the design of phantom cells to explore the interplay of lock-and-key forces (such as receptor-ligand binding) and universal forces for cell adhesion. Practical applications are the design of (highly selective) receptor surfaces of biosensors on electrooptical devices or the biofunctionalization of inorganic solids.},
 +
number = {5245},
 +
journal = {Science {(New} York, {N.Y.)}},
 +
author = {E. Sackmann},
 +
month = jan,
 +
year = {1996},
 +
note = {{PMID:} 8539599},
 +
keywords = {Biosensing Techniques, Cell Adhesion, Diffusion, Electrochemistry, Ligands, Lipid Bilayers, Membranes, Artificial, Polymers, Proteins, Receptors, Cell Surface, Surface Properties, Thermodynamics},
 +
pages = {43--48}
 +
}</bibentry>
 +
 
 +
<bibentry>@book{mayr_die_2002,
 +
edition = {1},
 +
title = {Die Entwicklung der biologischen Gedankenwelt: Vielfalt, Evolution und Vererbung},
 +
isbn = {3540432132},
 +
shorttitle = {Die Entwicklung der biologischen Gedankenwelt},
 +
publisher = {Springer, Berlin},
 +
author = {E. Mayr},
 +
month = jun,
 +
year = {2002}
 +
}</bibentry>
 +
 
 +
<bibentry>@book{mach_die_1963,
 +
title = {Die Mechanik},
 +
publisher = {Wissenschaftl. Buchgesellschaft},
 +
author = {E. Mach},
 +
year = {1963}
 +
}</bibentry>
 +
 
 +
<bibentry>@article{kulesa_cell_2002,
 +
title = {Cell dynamics during somite boundary formation revealed by time-lapse analysis},
 +
volume = {298},
 +
issn = {1095-9203},
 +
url = {http://www.ncbi.nlm.nih.gov/pubmed/12411697},
 +
doi = {10.1126/science.1075544},
 +
abstract = {We follow somite segmentation in living chick embryos and find that the shaping process is not a simple periodic slicing of tissue blocks but a much more carefully choreographed separation in which the somite pulls apart from the segmental plate. Cells move across the presumptive somite boundary and violate gene expression boundaries thought to correlate with the site of the somite boundary. Similarly, cells do not appear to be preassigned to a given somite as they leave the node. The results offer a detailed picture of somite shaping and provide a spatiotemporal framework for linking gene expression with cell movements.},
 +
number = {5595},
 +
journal = {Science {(New} York, {N.Y.)}},
 +
author = {P. M. Kulesa and S. E. Fraser},
 +
month = nov,
 +
year = {2002},
 +
note = {{PMID:} 12411697},
 +
keywords = {Animals, Boron Compounds, Carbocyanines, Cell Adhesion, Cell Movement, Cell Size, Central Nervous System, Ceramides, Chick Embryo, Epithelial Cells, Gene Expression, Gene Expression Profiling, Mesoderm, Microscopy, Confocal, Models, Biological, Receptor, {EphA4,} Somites, Time Factors},
 +
pages = {991--995}
 +
}</bibentry>
 +
 
 +
<bibentry>@article{keckes_cell-wall_2003,
 +
title = {Cell-wall recovery after irreversible deformation of wood},
 +
volume = {2},
 +
issn = {1476-1122},
 +
url = {http://www.ncbi.nlm.nih.gov/pubmed/14625541},
 +
doi = {10.1038/nmat1019},
 +
abstract = {The remarkable mechanical properties of biological materials reside in their complex hierarchical architecture and in specific molecular mechanistic phenomena. The fundamental importance of molecular interactions and bond recovery has been suggested by studies on deformation and fracture of bone and nacre. Like these mineral-based materials, wood also represents a complex nanocomposite with excellent mechanical performance, despite the fact that it is mainly based on polymers. In wood, however, the mechanistic contribution of processes in the cell wall is not fully understood. Here we have combined tensile tests on individual wood cells and on wood foils with simultaneous synchrotron X-ray diffraction analysis in order to separate deformation mechanisms inside the cell wall from those mediated by cell-cell interactions. We show that tensile deformation beyond the yield point does not deteriorate the stiffness of either individual cells or foils. This indicates that there is a dominant recovery mechanism that re-forms the amorphous matrix between the cellulose microfibrils within the cell wall, maintaining its mechanical properties. This stick-slip mechanism, rather like Velcro operating at the nanometre level, provides a 'plastic response' similar to that effected by moving dislocations in metals. We suggest that the molecular recovery mechanism in the cell matrix is a universal phenomenon dominating the tensile deformation of different wood tissue types.},
 +
number = {12},
 +
journal = {Nature Materials},
 +
author = {J. Keckes and I. Burgert and K. Frühmann and M. Müller and K. Kölln and M. Hamilton and M. Burghammer and S. V. Roth and S. {Stanzl-Tschegg} and P. Fratzl},
 +
month = dec,
 +
year = {2003},
 +
note = {{PMID:} 14625541},
 +
keywords = {Adaptation, Physiological, Cellulose, Computer Simulation, Elasticity, Extracellular Matrix, Ginkgo biloba, Gymnosperms, Juniperus, Materials Testing, Models, Biological, Models, Molecular, Nonlinear Dynamics, Picea, Plant Stems, Tensile Strength, {Weight-Bearing,} Wood},
 +
pages = {810--814}
 +
}</bibentry>
 +
 
 +
<bibentry>@article{hemmen_die_2001,
 +
title = {Die Karte im Kopf - Wie stellt das Gehirn seine Umwelt dar?},
 +
volume = {47},
 +
number = {2},
 +
journal = {Physikalische Blätter},
 +
author = {J. L. van Hemmen},
 +
year = {2001},
 +
keywords = {biology, localisation},
 +
pages = {42, 37}
 +
}</bibentry>
 +
 
 +
<bibentry>@book{helmholtz_ber_2009,
 +
edition = {2},
 +
title = {Über die Erhaltung der Kraft},
 +
isbn = {3817130015},
 +
publisher = {Deutsch {(Harri)}},
 +
author = {H. von Helmholtz and A. Wangerin},
 +
month = dec,
 +
year = {2009}
 +
}</bibentry>
 +
 
 +
<bibentry>@article{fritz_flat_1994,
 +
title = {Flat pearls from biofabrication of organized composites on inorganic substrates},
 +
volume = {371},
 +
url = {http://dx.doi.org/10.1038/371049a0},
 +
number = {6492},
 +
journal = {Nature},
 +
author = {M. Fritz and A. Belcher and M. Radmacher and D. Walters and P. Hansma and G. Stucky and D. Morse and S. Mann},
 +
year = {1994},
 +
keywords = {nacre},
 +
pages = {51, 49}
 +
}</bibentry>
 +
 
 +
<bibentry>@article{fratzl_von_2002,
 +
title = {Von Knochen, Holz und Zähnen},
 +
volume = {5},
 +
abstract = {Biologische Materialien wie Holz, Knochen
 +
oder Zähne sind im Laufe der Evolution von
 +
der Natur für ihre jeweilige Anwendung optimiert
 +
worden. Die Bauprinzipien dieser Gewebe,
 +
ihre Eigenschaften und ihre Funktion liefern
 +
für die Materialwissenschaft wichtige
 +
Erkenntnisse, die sich für „biomimetisches“
 +
Design von neuartigen Werkstoffen einsetzen
 +
lassen. Anstatt viele (teure) Grundstoffe zu
 +
verwenden, kommt die Natur für den Großteil
 +
ihrer Materialien mit relativ wenigen Grundelementen
 +
aus, die gezielt strukturiert werden.
 +
Die meisten dieser Prinzipien sind noch unbekannt
 +
oder physikalisch unverstanden und bieten
 +
ein noch kaum erkundetes Betätigungsfeld
 +
für den Materialphysiker. Mögliche Anwendungen
 +
liegen in der Entwicklung von Werkstoffen
 +
für die Biomedizin (z. B. Knochenersatzmaterialien),
 +
aber auch für neuartige Sensoren oder
 +
intelligente Materialien.},
 +
journal = {Physik Journal},
 +
author = {P. Fratzl},
 +
year = {2002},
 +
pages = {49--55}
 +
}</bibentry>
 +
 
 +
<bibentry>@article{arzt_micro_2003,
 +
title = {From micro to nano contacts in biological attachment devices},
 +
volume = {100},
 +
issn = {0027-8424},
 +
url = {http://www.ncbi.nlm.nih.gov/pubmed/12960386},
 +
doi = {10.1073/pnas.1534701100},
 +
abstract = {Animals with widely varying body weight, such as flies, spiders, and geckos, can adhere to and move along vertical walls and even ceilings. This ability is caused by very efficient attachment mechanisms in which patterned surface structures interact with the profile of the substrate. An extensive microscopic study has shown a strong inverse scaling effect in these attachment devices. Whereas microm dimensions of the terminal elements of the setae are sufficient for flies and beetles, geckos must resort to sub-microm devices to ensure adhesion. This general trend is quantitatively explained by applying the principles of contact mechanics, according to which splitting up the contact into finer subcontacts increases adhesion. This principle is widely spread in design of natural adhesive systems and may also be transferred into practical applications.},
 +
number = {19},
 +
journal = {Proceedings of the National Academy of Sciences of the United States of America},
 +
author = {E. Arzt and S. Gorb and R. Spolenak},
 +
month = sep,
 +
year = {2003},
 +
note = {{PMID:} 12960386},
 +
keywords = {Animals, Biosensing Techniques, Nanotechnology},
 +
pages = {10603--10606}
 +
}</bibentry>
 +
 
 +
<bibentry>@article{addadi_mollusk_2006,
 +
title = {Mollusk shell formation: a source of new concepts for understanding biomineralization processes.},
 +
volume = {12},
 +
issn = {0947-6539},
 +
shorttitle = {Mollusk shell formation},
 +
url = {http://dx.doi.org/10.1002/chem.200500980},
 +
abstract = {The biological approach to forming crystals is proving to be most surprising. Mollusks build their shells by using a hydrophobic silk gel, very acidic aspartic acid rich proteins, and apparently also an amorphous precursor phase from which the crystals form. All this takes place in a highly structured chitinous framework. Here we present ideas on how these disparate components work together to produce the highly structured pearly nacreous layer of the mollusk shell.},
 +
number = {4},
 +
journal = {Chemistry {(Weinheim} an der Bergstrasse, Germany)},
 +
author = {L. Addadi and D. Joester and F. Nudelman and S. Weiner},
 +
month = jan,
 +
year = {2006},
 +
keywords = {biomineralisation},
 +
pages = {987, 980}
 +
}</bibentry>
 +
 
<bibexport/>
<bibexport/>

Revision as of 16:52, 20 November 2010

Referenzen aus dem Buch

Kapitel 1

E. Schrödinger (1999): Was ist Leben?
Type: book by Piper Verlag {GmbH}.

E. Sackmann (1996): Supported membranes: scientific and practical applications
Type: article by Science {(New} York, {N.Y.)}.
link: http://www.ncbi.nlm.nih.gov/pubmed/8539599
Abstract:

Scientific and practical applications of supported lipid-protein bilayers are described. Membranes can be covalently coupled to or separated from solids by ultrathin layers of water or soft polymer cushions. The latter systems maintain the structural and dynamic properties of free bilayers, forming a class of models of biomembranes that allow the application of a manifold of surface-sensitive techniques. They form versatile models of low-dimensionality complex fluids, which can be used to study interfacial forces and wetting phenomena, and enable the design of phantom cells to explore the interplay of lock-and-key forces (such as receptor-ligand binding) and universal forces for cell adhesion. Practical applications are the design of (highly selective) receptor surfaces of biosensors on electrooptical devices or the biofunctionalization of inorganic solids.

E. Mayr (2002): Die Entwicklung der biologischen Gedankenwelt: Vielfalt, Evolution und Vererbung
Type: book by Springer, Berlin.

E. Mach (1963): Die Mechanik
Type: book by Wissenschaftl. Buchgesellschaft.

P. M. Kulesa, S. E. Fraser (2002): Cell dynamics during somite boundary formation revealed by time-lapse analysis
Type: article by Science {(New} York, {N.Y.)}.
doi: 10.1126/science.1075544
link: http://www.ncbi.nlm.nih.gov/pubmed/12411697
Abstract:

We follow somite segmentation in living chick embryos and find that the shaping process is not a simple periodic slicing of tissue blocks but a much more carefully choreographed separation in which the somite pulls apart from the segmental plate. Cells move across the presumptive somite boundary and violate gene expression boundaries thought to correlate with the site of the somite boundary. Similarly, cells do not appear to be preassigned to a given somite as they leave the node. The results offer a detailed picture of somite shaping and provide a spatiotemporal framework for linking gene expression with cell movements.

J. Keckes, I. Burgert, K. Frühmann, M. Müller, K. Kölln, M. Hamilton, M. Burghammer, S. V. Roth, S. Stanzl-Tschegg, P. Fratzl (2003): Cell-wall recovery after irreversible deformation of wood
Type: article by Nature Materials.
doi: 10.1038/nmat1019
link: http://www.ncbi.nlm.nih.gov/pubmed/14625541
Abstract:

The remarkable mechanical properties of biological materials reside in their complex hierarchical architecture and in specific molecular mechanistic phenomena. The fundamental importance of molecular interactions and bond recovery has been suggested by studies on deformation and fracture of bone and nacre. Like these mineral-based materials, wood also represents a complex nanocomposite with excellent mechanical performance, despite the fact that it is mainly based on polymers. In wood, however, the mechanistic contribution of processes in the cell wall is not fully understood. Here we have combined tensile tests on individual wood cells and on wood foils with simultaneous synchrotron X-ray diffraction analysis in order to separate deformation mechanisms inside the cell wall from those mediated by cell-cell interactions. We show that tensile deformation beyond the yield point does not deteriorate the stiffness of either individual cells or foils. This indicates that there is a dominant recovery mechanism that re-forms the amorphous matrix between the cellulose microfibrils within the cell wall, maintaining its mechanical properties. This stick-slip mechanism, rather like Velcro operating at the nanometre level, provides a 'plastic response' similar to that effected by moving dislocations in metals. We suggest that the molecular recovery mechanism in the cell matrix is a universal phenomenon dominating the tensile deformation of different wood tissue types.

J. L. van Hemmen (2001): Die Karte im Kopf - Wie stellt das Gehirn seine Umwelt dar?
Type: article by Physikalische Blätter.

H. von Helmholtz, A. Wangerin (2009): Über die Erhaltung der Kraft
Type: book by Deutsch {(Harri)}.

M. Fritz, A. Belcher, M. Radmacher, D. Walters, P. Hansma, G. Stucky, D. Morse, S. Mann (1994): Flat pearls from biofabrication of organized composites on inorganic substrates
Type: article by Nature.
link: http://dx.doi.org/10.1038/371049a0

P. Fratzl (2002): Von Knochen, Holz und Zähnen
Type: article by Physik Journal.
Abstract:

Biologische Materialien wie Holz, Knochen

oder Zähne sind im Laufe der Evolution von der Natur für ihre jeweilige Anwendung optimiert worden. Die Bauprinzipien dieser Gewebe, ihre Eigenschaften und ihre Funktion liefern für die Materialwissenschaft wichtige Erkenntnisse, die sich für „biomimetisches“ Design von neuartigen Werkstoffen einsetzen lassen. Anstatt viele (teure) Grundstoffe zu verwenden, kommt die Natur für den Großteil ihrer Materialien mit relativ wenigen Grundelementen aus, die gezielt strukturiert werden. Die meisten dieser Prinzipien sind noch unbekannt oder physikalisch unverstanden und bieten ein noch kaum erkundetes Betätigungsfeld für den Materialphysiker. Mögliche Anwendungen liegen in der Entwicklung von Werkstoffen für die Biomedizin (z. B. Knochenersatzmaterialien), aber auch für neuartige Sensoren oder intelligente Materialien.

E. Arzt, S. Gorb, R. Spolenak (2003): From micro to nano contacts in biological attachment devices
Type: article by Proceedings of the National Academy of Sciences of the United States of America.
doi: 10.1073/pnas.1534701100
link: http://www.ncbi.nlm.nih.gov/pubmed/12960386
Abstract:

Animals with widely varying body weight, such as flies, spiders, and geckos, can adhere to and move along vertical walls and even ceilings. This ability is caused by very efficient attachment mechanisms in which patterned surface structures interact with the profile of the substrate. An extensive microscopic study has shown a strong inverse scaling effect in these attachment devices. Whereas microm dimensions of the terminal elements of the setae are sufficient for flies and beetles, geckos must resort to sub-microm devices to ensure adhesion. This general trend is quantitatively explained by applying the principles of contact mechanics, according to which splitting up the contact into finer subcontacts increases adhesion. This principle is widely spread in design of natural adhesive systems and may also be transferred into practical applications.

L. Addadi, D. Joester, F. Nudelman, S. Weiner (2006): Mollusk shell formation: a source of new concepts for understanding biomineralization processes.
Type: article by Chemistry {(Weinheim} an der Bergstrasse, Germany).
link: http://dx.doi.org/10.1002/chem.200500980
Abstract:

The biological approach to forming crystals is proving to be most surprising. Mollusks build their shells by using a hydrophobic silk gel, very acidic aspartic acid rich proteins, and apparently also an amorphous precursor phase from which the crystals form. All this takes place in a highly structured chitinous framework. Here we present ideas on how these disparate components work together to produce the highly structured pearly nacreous layer of the mollusk shell.